Use of Aryltin Compounds in the Preparation of Diaryl- and Diaroyldi-µ-chloro-bis(triorganophosphine)diplatinum(II) Complexes †

By Colin Eaborn,* Kevin J. Odell, and Alan Pidcock,* School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ

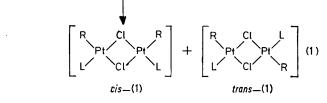
The complexes *cis*-[Pt(C₂H₄)Cl₂L] (L = triorganophosphine) react with compounds SnRMe₃ (R = aryl) (1 mol equivalent) to give the chloride-bridged arylplatinum complexes [Pt₂R₂Cl₂L₂], which exist in solution as mixtures of *cis* and *trans* isomers. The [Pt₂R₂Cl₂L₂] complexes react with ligand species L' [L' = NCMe, SBu^t₂, pyridine, NBu^H₄, AsPh₃, PEt₃, PBuⁿ₃, PPh₃, or P(OPh₃] to give the mononuclear complexes [PtR(Cl)L(L')], and this represents an excellent route to mononuclear complexes having four different ligands on platinum. Cyclo-octa 1,5-diene (cod), however, gives [PtR(Cl)L₂] and [Pt(cod)R(Cl)], while 2.2'-bipyridyl (bipy) gives the salt [PtR(bipy)L]Cl. Sodium thiocyanate reacts with [Pt₂(C₆H₄Me-*p*)₂Cl₂(PEt₂Ph)₂] to give the thiocyanate-bridgcd [Pt₂(C₆H₄Me-*p*)₂(PEt₂Ph)₂], and [NEt₄]Cl reacts with [Pt₂(C₆H₄Buⁿ-*p*)₂Cl₂(PMe₂Ph)₂] to give the salt [NEt₄][Pt(C₆H₄Buⁿ-*p*)Cl₂(PMe₂Ph)₂]. The carbonyl complexes *cis*-[Pt(CO)Cl₂L] react with SnRMe₃ to give the binuclear aroyl complexes [PtR(Cl)L₂]. The carbonyl complexes *cis*-[Pt(CO)Cl₂L] react with SnRMe₃ to give the binuclear aroyl complexes react with neutral ligand species L' = NBuⁿH₂ or P(OPh)₃ to give the mononuclear complexes [Pt₂(COR)₂Cl₂(PEt₂)₂]. to give the mononuclear complexes react with neutral ligand species L' = NBuⁿH₂ or P(OPh)₃ to give the mononuclear complexes (Pt₂(COR)₄Bu^t-*p*)Cl₂(PEt₃)₂]. Again excess of SnRMe₃ causes decomposition, to give [Pt(COR)Cl(L)] complexes. Heating of the aroyl complexes of SnRMe₃ causes decomposition, to give [Pt(COC₆H₄Bu^t-*p*)Cl-(PMe₂Ph)₂]. Again excess of SnRMe₃ causes decomposition, to give [Pt(COC₆H₄Bu^t-*p*)Cl-(PMe₂Ph)₂]. The ³¹P-¹H₁ n.m.r. spectra of the complexes have been recorded, and are used extensively in the identification of products.

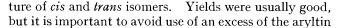
WE have previously shown that aryltrimethyltin compounds, $SnRMe_3$, react readily with the cyclo-octa-1,5diene (cod) complex [Pt(cod)Cl₂] to give good yields of [Pt(cod)R(Cl)] or [Pt(cod)R₂] complexes, depending on the ratio of reactants used.¹ We also observed that the bis(phosphine) complexes [PtCl₂(PR₃)₂] do not react

† No reprints available.

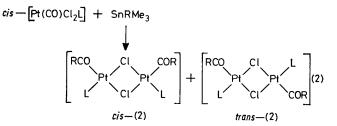
¹ C. Eaborn, K. J. Odell, and A. Pidcock, *J.C.S. Dalton*, 1978, 357.

with the aryltin compounds. We now describe the results of a study of the reactions of SnRMe₃ compounds with the mixed olefin-phosphine and carbonyl-phosphine complexes $[Pt(C_2H_4)Cl_2L]$ and $[Pt(CO)Cl_2L]$ (L = PEt₃, PEt₂Ph or PMe₂Ph), which provides good routes to the halide-bridged aryl or aroyl species $[Pt_2R_2Cl_2L_2]$ and $[Pt_2(COR)_2Cl_2L_2]$.²


² For a brief preliminary account see C. Eaborn, K. J. Odell, and A. Pidcock, J. Organometallic Chem., 1975, 96, C38.


1978

RESULTS AND DISCUSSION


Addition of a 1 mol equivalent of $SnRMe_3$ [R = Ph, C_6H_4Me-p , $C_6H_4Bu^t-p$, 2-thienyl (2- C_4H_3S), or 2-benzo[b]furyl $(2-C_8H_5O)$] to a solution of cis-[Pt(C₂H₄)Cl₂L] (L = PEt₃, PEt₂Ph, or PMe₂Ph) in dichloromethane immediately produced a yellow colour and an odour of chlorotrimethyltin. The mixture was left for 1 h at room temperature, the solvent was evaporated, the SnMe₃Cl extracted with pentane, and the residue recrystallized from chloroform-pentane. The products were identified by elemental analysis and by their spectroscopic properties (see below) as the complexes $[PtR_2Cl_2L_2]$ (1) [equation (1)] which exist, at least in solution, as a mix-

 $cis - [Pt(C_2H_4)Cl_2L] + SnRMe_3$

types (1) and (2). Cross and Wardle 3 have previously made the benzoyl complexes of type (2) (*i.e.* R = Ph) by

treatment of cis-[Pt(CO)Cl₂L] (L = PPh₃ or PBu₃) with diphenylmercury, but the yield was low because of decomposition of the benzoyl complex during removal of the chloro(phenyl)mercury(II) by sublimation. Aryl complexes of type (1) do not undergo such decomposition, and we obtained a 44% yield of [Pt₂Ph₂Cl₂(PEt₃)₂] by treatment of $cis-[Pt(C_2H_4)Cl_2(PEt_3)]$ with HgPh₂. In this case use of SnMe₃Ph gave only a similar yield, because of the mixing procedure we used (see above), but even for comparable yields the ease of work-up makes SnRMe₃ much more convenient reagents than HgR₂.

We found that tetramethyltin does not react with cis- $[Pt(C_{2}H_{4})Cl_{2}(PEt_{3})]$ at room temperature, and at reflux

TABLE 1

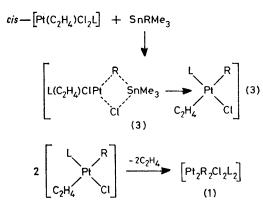
Analytical and physical data for complexes $[Pt_2R'_2Cl_2L_2]$ [R' = aryl(R) or COR] isolated from reactions between SnRMe₄ and $[Pt(C_2H_4)Cl_2L]$ or $[Pt(CO)Cl_2L]$

		Yield	M.p. "	Analysis (%) ^b		I.r. data	I.r. data (cm ⁻¹) °	
\mathbf{R}'	L	$\binom{0}{20}$	$(\theta_{e}/^{\circ}C)$	C	Н	$\nu(\text{Pt-Cl})$	$\nu(CO)$	
Ph	PEt_{a}	44	160	33.8 (33.85)	4.7(4.7)	285(260)		
$C_{6}H_{4}Me-p$	PEt_3	41	209 - 210	35.5(35.5)	5.0 (5 .0)	279(255)		
C_6H_4Me-p	PEt_2Ph	81	197 - 199	41.5 (41.8)	4.6(4.5)	279 (256)		
C ₆ H₄Bu¹-p	$PMe_{2}Ph$	87	191	42.0(43.0)	4.7(4.8)	281 (255)		
2-Thienyl	PMe ₂ Ph	66	175	31.9 (31.9)	3.2(3.1)	281 (260)		
2-Benzo[b]furyl	PMe_2Ph	80	209 - 213	40.3 (38.6)	3.4(3.3)	290(264)		
$\text{COC}_{6}\mathbf{H}_{4}\mathbf{Bu^{t}}$ - p	$PMe_{2}Ph$	67	249 - 250	42.8 (43.1)	4.6(4.6)	278	1 640, 1 602	
$COC_{6}H_{4}Me-p$	PEt_3	70	125 - 130	35.1 (34.3)	4.7(4.9)	280	1 620, 1 599	
COC_6H_4OMe-p	PEt_3	87	145	34.3 (34.75)	4.8(4.6)	276	1 620, 1 595	

"With decomposition. Calculated values are given in parentheses. Nujol mulls. The values in parentheses refer to shoulders to the main, intense, broad Pt-Cl band.

compounds, which causes decomposition of the product to $[PtR(Cl)L_2]$ (see below), and to maintain an excess of the platinum complex by careful dropwise addition of the tin reagent up to slightly less than the stoicheiometric amount. The relatively poor yields of the products when $L = PEt_3$ can be associated with the fact that in these cases the organotin compound was added in one portion to a suspension of cis-[Pt(C₂H₄)Cl₂(PEt₃)].

Similar treatment of the carbonyl complex cis- $[Pt(CO)Cl_2L]$ (L = PEt₃ or PMe₂Ph) with SnRMe₃ gives not aryl but aroyl complexes, (2) [equation (2)]; again, decomposition occurs if an excess of the SnRMe3 is present. It is not necessary to isolate the complexes *cis*-[Pt(CO)Cl₂L] since good results were obtained by adding the tin compound to the solutions obtained by bubbling carbon monoxide through solutions of $[Pt_2Cl_4L_2]$. The analyses and some physical constants of the products are shown in Table 1.


These reactions provide useful routes to complexes of

only decomposition of the complex occurred to give $[Pt_2Cl_4(PEt_3)_2]$ (cf. ref. 4). We did not examine the reaction of SnMe₄ with cis-[Pt(CO)Cl₂L] species, but Cross and Wardle³ obtained a small yield of cis-[Pt₂- $(COMe)_2Cl_2L_2$ by use of dimethylmercury.

It is noteworthy that, for X = Br or I, Chatt and Davidson⁵ obtained [Pt₂Ph₂X₂(PPr₃)₂] complexes in 20-30% yield by treatment of bridged complexes $[Pt_2X_4(PPr_3)_2]$ with phenyl-lithium, but for X = Cl they isolated only trans-[PtR2(PPr3)2] and concluded, wrongly in view of our results, that [Pt₂Ph₂Cl₂(PR₃)₂] species are unstable. It seems reasonable to write the reaction between the ethylene complex cis-[Pt(C₂H₄)Cl₂L] and SnRMe₃ compounds as involving initial formation of the species $[Pt(C_2H_4)R(Cl)L]$ (3) in a bimolecular process, e.g. that shown in equation (3), having characteristics of an

³ R. J. Cross and R. Wardle, J. Chem. Soc. (A), 1970, 840.
 ⁴ J. Chatt and L. M. Venanzi, J. Chem. Soc., 1955, 2787.
 ⁵ J. Chatt and J. M. Davidson, J. Chem. Soc., 1964, 2433.

electrophilic aromatic substitution, as discussed previously for the interaction of $[Pt(cod)Cl_2]$ and $SnRMe_3$.¹

Electron donation by the trans-aryl ligand in (3) would weaken the Pt-C2H4 bond, and ethylene would be readily lost to give the dimeric product (1). However, it is less likely that the reaction of the carbonyl complex cis-[Pt(CO)Cl₂L] involves initial formation of [Pt(CO)-R(Cl)L]. In the first place the alkyl complexes [Pt(CO)- $Me(I)(PPh_3)$ and $[Pt(CO)Et(Cl)(AsPh_3)]$ are known to be stable, and to show no tendency to form acyl complexes,⁶ though the corresponding aryl complexes could be markedly more labile. Secondly, if [Pt(CO)R(Cl)L] were formed with CO trans to R, which would be expected as a consequence of the large trans effect of CO, the configuration would be unfavourable for carbonyl migration to give the aroyl group, although it is conceivable that such migration could follow conversion into the isomer having the carbonyl ligand cis to R. Oxidative addition of the SnRMe₃ followed by carbonyl migration to form a five-co-ordinate species and reductive elimination of SnMe₃Cl to form the bridged complex is a reasonable alternative [equation (4)].

$$cis$$
-[Pt(CO)Cl₂L] + SnRMe₃ \longrightarrow [Pt(CO)RCl₂(SnMe₃)L] (4)

$$[\operatorname{Pt}_2(\operatorname{COR})_2\operatorname{Cl}_2L_2] \checkmark \operatorname{-SnMe_3Cl} [\operatorname{Pt}(\operatorname{COR})\operatorname{Cl}_2(\operatorname{SnMe}_3)L]$$

Spectroscopic Properties of $[Pt_2R_2Cl_2L_2]$ and $[Pt_2(COR)_2-Cl_2L_2]$.—Infrared spectra. The complexes $[Pt_2R_2Cl_2L_2]$ and $[Pt(COR)_2Cl_2L_2]$ show two bands in the 250—300 cm⁻¹ region. A strong band at *ca*. 280 cm⁻¹ is assigned to the bridge stretching vibration v(Pt-Cl) associated largely with the bond *trans* to L in the *trans* complexes; a shoulder on the low-frequency side may be due to the ³⁷Cl isotope.⁷ A less-intense band at *ca*. 260 cm⁻¹ may be at too high a frequency to arise from v(Pt-Cl) *trans* to R; the n.m.r. spectra (see below) show that in solution *cis* and *trans* isomers are present and, if these are also present in the solid, bands arising from v(Pt-Cl) *trans* to L could

⁶ C. J. Wilson, M. G. Green, and R. J. Mawby, *J.C.S. Dalton*, 1974, 421; R. W. Glyde and R. J. Mawby, *Inorg. Chem.*, 1971, **10**, 854. ⁷ D. M. Adams and P. J. Chandler, *J. Chem. Soc.* (4), 1969. be expected from the *cis* isomer. There are no clear bands in the 200—250 cm⁻¹ region, and so it is possible that no band for v(Pt-Cl) *trans* to R or COR is detected; in view of the high *trans* influences of aryl and benzoyl⁸ ligands this band may be at <200 cm⁻¹.

The aroyl complexes show two bands in the range 1 600—1 640 cm⁻¹, a region similar to that in which the carbonyl-stretching bands of mononuclear benzoyl complexes are usually found. Again the appearance of two bands is consistent with the presence of *cis* and *trans* isomers. A weaker band at *ca*. 1 570 cm⁻¹ is given also by the aryl complexes, and can be assigned to the aromatic ring.

N.m.r. spectra. The ³¹P-{¹H} n.m.r. parameters of complexes (1) and (2) are listed in Table 2. The presence of two components, believed to be *cis* and *trans* isomers, is evident; the chemical shifts are very similar and in some cases coincident, but the coupling constants $^{1}J(Pt-P)$ differ by 50-100 Hz. The larger coupling constant is tentatively assigned to the trans isomer by comparison with the spectra of the complexes $[Pt_2Cl_4L_2]$, for which the two isomers can be unambiguously identified.⁹ On this basis the *cis* isomer almost always predominates, as was observed for the related bromidebridged complex [Pt2Br2Ph2(PPr3)2] from dipole-moment studies.⁵ The coupling constants ${}^{1}J(Pt-P)$ in the *cis* and trans isomers of the PEt₃ complexes (Table 2) are much larger than that for PEt₃ trans to bridging chlorine in sym-trans-[Pt₂Cl₄(PEt₃)₂] (3 845 Hz).⁹ This is probably mainly due to the presence of an aryl or aroyl ligand *cis* to phosphorus, but there may also be some weakening of the chlorine bridge bonds due to the high trans influence of the aryl and aroyl ligands.⁹

The presence of two isomeric forms is also evident as a slight splitting of the ¹H n.m.r. resonances from the protons of the X groups in the complexes $[Pt_2(C_6H_4X-p)_2-Cl_2L_2]$ (X = Me, OMe, or Bu^t). This splitting is less marked for the corresponding aroyl complexes.

Reactions of $[Pt_2R_2Cl_2L_2]$ and $[Pt_2(COR)_2Cl_2L_2]$.—(a) With neutral species. Treatment of the bridged complexes $[Pt_2R'_2Cl_2L_2]$ [R' = aryl (R) or COR] with neutral unidentate ligands L' $[L' = MeCN, SR''_2, C_5H_5N, NBu^n H_2, SbPh_3, PR''_3, \text{ or } P(QR'')_3]$ readily brings about bridge splitting to give mononuclear complexes [PtR(Cl)L(L')] [equation (5)]. This reaction, which pro-

$$[Pt_2R_2Cl_2L_2] + 2L' \longrightarrow 2[PtR(Cl)L(L')]$$
 (5)

vides an excellent route to mononuclear platinum(II) complexes containing four different ligands, occurs markedly more readily than the corresponding reaction of $[Pt_2Cl_4L_2]$ complexes, presumably because of the high *trans* effect of the R or COR groups; *e.g.* AsPh₃ or pyridine react immediately to give a colourless solution, while complete reaction with corresponding dimeric tetrachloro-species often requires refluxing.¹⁰ Only the products $[Pt(C_6H_4Me-p)Cl(NC_5H_5)(PEt_3)]$ and [Pt-

⁷ D. M. Adams and P. J. Chandler, J. Chem. Soc. (A), 1969, 588.

⁸ S. P. Dent, C. Eaborn, A. Pidcock, and B. Ratcliff, *J. Organo-metallic Chem.*, 1972, **46**, C68.

⁹ K. J. Odell, D. Phil. Thesis, University of Sussex, 1976.

 $(AsPh_3)(2-C_8H_5O)Cl(PMe_2Ph)$] were isolated and the spectra were recorded within 1 h. Except for L' =

other products were identified in the reaction mixtures amine, a single isomer was produced; since the coupling

TABLE 2	
Hydrogen-1 and ³¹ P-{ ¹ H} n.m.r. data for the complexes $[Pt_2R'_2Cl_2L_2]$ $[R' = aryl (R)$ or COL	۲]

			31			
		Isomer		·P-{ ¹ H}	¹ H for X in C_6H_4X	
\mathbf{R}'	\mathbf{L}	(proportion in %)	δ/p.p.m.	$^{1}J(Pt-P)/Hz$	(τ)	Notes
$2 - C_8 H_5 O$	PMe ₂ Ph	cis - (52)	152.3	4477		a,b
0 0	-	trans (48)	152.6	4 495		a,b
C ₆ H₄Bu ^t -⊅	PMe,Ph	cis (73)	153.9	4885	7.80	c
• • •	-	trans (27)	153.9	4951	7.84	d
$2-C_4H_3S$	PMe₂Ph	cis (45)	153.8	4567		a,e
		trans (55)	154.4	4578		a,e
C ₆ H₄Me-p	PEt_3	cis (80)	130.8	4755	7.89	
		trans (20)	131.4	4828	7.92	
Ph	PEt_3	cis (73)	130.8	4734		
		trans (27)	131.4	4780		
C ₆ H₄SnMe₃-p	PEt_3	cis (69)	130.7	$4\ 651$		
		trans (31)	131.2	4680		
C_6H_4Me-p	PEt_2Ph	cis (69)	132.8	4 863	7.99	f
		trans (31)	132.8	4 915	8.02	
C ₆ H₄OMe- <i>p</i>	PPr ₃	cis (72)	139.2	4712		
		trans (28)	139.7	4746		
COC ₆ H₄Bu¹-p	PMe ₂ Ph	cis (75)	155.1	$5\ 208$	8.82	a,g
		trans (25)	155.1	$5\ 332$		a,g
$\text{COC}_6\text{H}_4\text{Me-}p$	PEt ₃	cis (70)	129.5	5049	7.70	ar
		trans (30)	129.5	$5\ 149$		a
COC ₆ H₄Me-p	PEt_3	cis (69)	129.5	$5\ 059$	6.21	а
		trans (31)	129.5	$5\ 159$		а

^a Hydrogen-1 n.m.r. spectra of *cis* and *trans* isomer not resolved. ^b In ¹H n.m.r.: ²*J*(PCH) 11 and ³*J*(PtPCH) 50 Hz; τ (PCH₃) 8.41. ^c In ¹H n.m.r.: ²*J*(PCH) 11 and ³*J*(PtPCH) 53 Hz; τ (PCH₃) 8.57. ^d In ¹H n.m.r.: ²*J*(PCH) 11 and ³*J*(PtPCH) 54 Hz; τ (PCH₃) 8.53. ^c In ¹H n.m.r.: ²*J*(PCH) 11 and ³*J*(PtPCH) 49 Hz; τ (PCH₃) 8.48. ^f In ³IP-{¹H} n.m.r.: ²*J*(PtClPt) 110, ³*J*-(PtClPt) -5; and ⁴*J*(PtPClPtP) <3 Hz. ^g In ¹H n.m.r.: ²*J*(PCH) 11 and ³*J*(PtPCH) 11 and ³*J*(PtPCH) 11 and ³*J*(PtPCH) 11 and ³*J*(PtPCH) 49 Hz; τ (PCH₃) 8.48. ^f In ³IP-{¹H} n.m.r.: ²*J*(PtClPt) 110, ³*J*-(PtClPt) -5; and ⁴*J*(PtPClPtP) <3 Hz. ^g In ¹H n.m.r.: ²*J*(PCH) 11 and ³*J*(PtPCH) 11 and 1

TABLE 3

Some ${}^{31}P_{1}^{1}H_{1}$ n.m.r. data for products of the interaction of $[Pt_{2}R_{2}Cl_{2}L_{2}]$ complexes with neutral species L'

R	L	L'	Product		$^{1}/(\text{Pt}-\text{P})/\text{Hz}$	-	Notes
C ₆ H₄Me-p	PEt_3	NCMe	[PtR(Cl)L(L')]	131.3	4 307	MeCN	
- 04 I		SBu ^t ₂	[PtR(Cl)L(L')]	130.3	4 111		
		NC_5H_5	PtR(CI)L(L')	136.7	4048	рy	
		Piperidine	[PtR(Cl)L(L')]	135.4	4048	ру Cl	
		I		137.6	3 938	$C_5H_{11}N$	
		NBu ⁿ H,	[PtR(Cl)L(L')]	136.8	$4\ 009$	ci	
		-		135.5	3 894	$NBu^{n}H_{2}$	
		$SbPh_3$	[PtR(Cl)L(L')]	128.5	3 933	SbPh ₃	
		AsPh ₃	[PtR(Cl)L(L')]	127.6	3736	$AsPh_3$	
		PEt ₃	[PtR(Cl)L ₂]	126.0	2800	PEt ₃	
		cod	[PtR(Cl)L ₂]	126.0	2800	PEt_{a}	
		P(OPh) ₃	trans-[PtR(Cl)L(L')]	126.5	2983	P(OPh)3	a
		PPh ₃	trans-[PtR(Cl)L(L')]	113.5	2832	PPh ₃	b
		PBu_{3}^{n}	$trans{PtR(Cl)L(L')]$	123.7	2.791	PBun₃	С
		MeC ₆ H ₄ SnMe ₃ -p	$[PtR(Cl)L_2]$	126.0	2800	PEt ₃	
C ₆ H₄Bu ^t -p	PMc ₂ Ph	bipy	[PtR(L)(L')]Cl	153.4	$4\ 082$	<u></u> bipy <u></u>	
		NBu ⁿ H ₂	[PtR(Cl)L(L')]	157.5	3 909	$NBu^{n}H_{2}$	
		cod	$[PtR(Cl)L_2]$	145.3	$2\ 874$	PMe_2Ph	
		BiPh3	$[PtR(Cl)L_2]$	145.4	$2\ 866$	PMe₂Ph	
C ₆ H₄Me-p	PEt ₂ Ph	cod	$[PtR(Cl)L_2]$	126.5	2881	PEt_2Ph	
$2-C_8H_5O$	PMe_2Ph	AsPh ₃	[PtR(Cl)L(L')]	147.4	$3 \ 437$	AsPh ₃	
COC ₆ H₄Me-⊅	PEt_3	$NBu^{n}H_{2}$	[PtR(Cl)L(L')]	135.0	$4\ 175$	Cl	
				136.8	3887	$NBu^{n}H_{2}$	
$\text{COC}_6\text{H}_4\text{Bu}^{ ext{t}}$ - p	PMe ₂ Ph	cod	$trans-[PtR(Cl)L_2]$	148.2	3 076	PMe ₂ Ph	d
			$cis-[PtR(Cl)L_2]$	150.4	1609	R	
				150.7	4 243	Cl	
COC ₆ H₄Me-p	PEt_3	$P(OPh)_{3}$	trans-[PtR(Cl)L(L')]	126.5	3 203	$P(OPh)_{3}$	e
COC ₆ H ₄ Me-p	PEt ₃		$trans-[PtR(Cl)L_2]$	126.7	2 998	PEt ₃	
$COC_6H_4Bu^{t}-p$	PMe ₂ Ph	$\operatorname{Bu}^{t}C_{6}H_{4}SnMe_{3}-p$	$trans-[PtR(Cl)L_2]$	148.1	3 066	PMe₂Ph	
COC ₆ H₄Bu¹-⊅	PMe₂Ph	™eOC ₆ H₄SnMe₃-⊅	$trans-[PtR(Cl)L_2]$	148.2	3 072	PMe ₂ Ph	
			$trans-[Pt(C_6H_4OMe-p)ClL_2]$	145.3	2 854	PMe₂Ph	1.50

^a For P(OPh)₃ trans to L : δ 41.2 p.p.m.; ¹J(Pt-P) 4 985 and ²J(PPtP) 652 Hz. ^b For PPh₃ trans to L : δ 127.3 p.p.m.; ¹J(Pt-P) 2 900 and ²J(PPtP) 432 Hz. ^c For PBu₃ trans to L : δ 136.5 p.p.m.; ¹J(Pt-P) 2 786 and ²J(PPtP) 420 Hz. ^d ²J(PPtP) 17 Hz. ^e For P(OPh)₃ trans to L : δ 41.2 p.p.m.; ¹J(Pt-P) 5 435 and ²J(PPtP) 562 Hz.

by their ³¹P-{¹H} n.m.r. spectra (Table 3). For $L' = \text{constants } {}^{1}J(Pt-P)$ follow a sequence corresponding to PR_3 exactly 2 mol equivalents of the ligand were added, but in the other cases a slight excess of L' was used; the $SBu_2^t < amine < SbPh_3 < AsPh_3 < PR_3$, it is very

that of the trans influences of the ligands L' (viz. MeCN <

likely that L and L' are *trans* to one another. Formation of the two isomers might be expected, and it is possible that this does, indeed, occur, but that isomerization to give a single isomer then occurs, catalyzed by an excess of L'. It is noteworthy that for $[Pt(C_6H_4Me-\phi)Cl(PEt_3)-$ L' (L' = amine) the isomer with the amine *trans* to the aryl group predominates (ca. 82%) for L' = pyridine, whereas with the more basic n-butylamine the isomer with the amine trans to PEt_3 predominates (ca. 76%).

When carbon monoxide was passed for 2 h through a solution of $[Pt(C_6H_4Me-p)_2Cl_2(PEt_3)_2]$ in dichloromethane, and the solvent then removed, the pale yellow solid obtained had an i.r. spectrum almost identical with that of the starting material, and there were no bands at 1 600-1 700 cm⁻¹ typical of aroyl carbonyl-stretching modes, but new weak bands at 2 068 and 2 059 cm⁻¹ indicated the formation of trace amounts of a product having terminal carbonyl ligands.

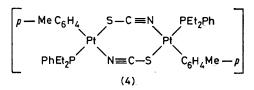
The complex $[Pt_2(C_6H_4Bu^t-p)_2Cl_2(PMe_2Ph)_2]$ reacted with an excess of 2,2'-bipyridyl (bipy) to give the salt $[Pt(C_{6}H_{4}Bu^{t}-p)(bipy)(PMe_{2}Ph)]Cl.$ A route analogous to that proposed for the corresponding reactions of $[Pt_2Cl_4L_2]$ complexes with bidentate amine or phosphine ligands ¹¹ can be postulated [equation (6)]. In contrast,

$$[Pt_{2}R_{2}Cl_{2}L_{2}] + bipy \longrightarrow [PtR(bipy)L][PtRCl_{2}L]$$

$$\downarrow bipy \qquad (6)$$

$$2[PtR(bipy)L]Cl$$

unsymmetrical bridge cleavage occurred when a solution of $[Pt_2R_2Cl_2L_2]$ (R = C₆H₄Me-p, L = PEt₃; or R = $C_6H_4Bu^{t}-p$, $L = PMe_2Ph$) was heated under reflux with an excess of cod for several hours, and roughly equimolar quantities of $[PtR(Cl)L_2]$ and [Pt(cod)R(Cl)] were isolated [equation (7)]. The corresponding products from treat- $[Pt_2R_2Cl_2L_3] +$


$$[Pt(cod)(R)Cl] + [Pt(R)ClL_2] \quad (7)$$

ment of [Pt₂(COC₆H₄Bu^t-p)₂Cl₂(PMe₂Ph)₂] with cod could not be satisfactorily separated, but the ³¹P-{¹H} n.m.r. spectrum showed the presence of *cis*- and *trans*-[Pt- $(COC_6H_4Bu^{t}-p)Cl(PMe_2Ph)_2].$ An unsymmetrical cleavage of [Pt2Br6]2- by cod to give [PtBr2(cod)] and $[PtBr_4]^{2-}$ has been noted.¹²

Addition of $SnRMe_3$ to the complexes $[Pt_2R_2Cl_2L_2]$ in dichloromethane immediately gave a black precipitate, indicating extensive decomposition, and the ³¹P-{¹H} n.m.r. spectrum of the supernatant solution showed the presence of only a single Pt-P complex, identified as $[PtR(Cl)L_2]$. On treatment of $[Pt_2(COC_6H_4Bu^t-p)_2Cl_2 (PMe_2Ph)_2$] with $Sn(C_6H_4OMe_{-p})Me_3$, containing a different aryl group, two products trans- $[Pt(COC_6H_4Bu^t-p)Cl (PMe_2Ph)_2$ and trans- $[Pt(C_6H_4OMe-p)Cl(PMe_2Ph)_2]$ were observed, but when $Sn(C_6H_4Bu^t-p)Me_3$ was used only $trans-[Pt(COC_6H_4Bu^t-p)Cl(PMe_2Ph)_2]$ was detected, and no $trans-[Pt(C_6H_4Bu^t-p)Cl(PMe_2Ph)_2].$

(b) With anionic species. Monitoring of the ${}^{31}P-{}^{1}H$ n.m.r. spectrum showed that tetraethylammonium chloride reacts with $[Pt_2(C_6H_4Bu^t-p)_2Cl_2(PMe_2Ph)_2]$ to give the $[NEt_4][Pt(C_6H_4Bu^t-p)Cl_2(PMe_2Ph)];$ salt analogous bridge splitting is known to occur with $[Pt_2Cl_4L_2]$ complexes.13

In contrast, sodium thiocyanate reacted with $[Pt_2(C_6H_4 Me-p_2Cl_2(PEt_2Ph)_2$ to give $[Pt_2(C_6H_4Me-p)_2(PEt_2Ph)_2(\mu-p)_2(\mu-p)_2(PEt_2Ph)_2(\mu-p)_2(\mu-$ SCN)₂]; the spectrum of the product at room temperature

showed a single, clearly resolved, resonance, with well defined platinum satellites, δ 130.7 p.p.m. [1/(Pt-P) 4 111 Hz]. Since there is no evidence of ³¹P-¹⁴N interaction configuration (4) is tentatively assigned. The iodidebridged complex $[Pt_2(COC_6H_4OMe-p)_2I_2(PEt_3)_2]$ was isolated from the reaction between sodium iodide and the aroyl complex $[Pt(COC_6H_4OMe-p)_2Cl_2(PEt_3)_2];$ the ³¹P-{¹H} n.m.r. spectrum indicated that effectively equal amounts of cis and trans isomer were present in the solution in CDCl₃.

(c) Decarbonylation of $[Pt_2(COC_6H_4Me-p)_2Cl_2(PEt_3)_2]$. When the aroyl complex $[Pt_2(COC_6H_4Me-p)_2Cl_2(PEt_3)_2]$ was heated at 130 °C (0.01 mmHg) * extensive decomposition occurred, but the ³¹P-{¹H} n.m.r. spectrum of the soluble products showed that some of the corresponding aryl complex $[Pt_2(C_6H_4Me-p)_2Cl_2(PEt_3)_2]$ had been formed.

The Reaction of trans- $[Pt(COC_6H_4Me-p)Cl(PEt_3)_2]$ with SFO₂(OMe).—An interesting example of migration of an aryl ligand to platinum with retention of the platinumcarbonyl linkage occurred when trans-[Pt(COC₆H₄Me-p)- $Cl(PEt_3)_2$ (prepared by adding PEt₃ to the corresponding binuclear aroyl complex) was treated with an excess of methyl fluorosulphate. The ³¹P-{¹H} n.m.r. spectrum of the reaction mixture showed a single Pt-P species to be present [δ 126.8 p.p.m., ¹/(Pt-P) 3 000 Hz], and the i.r. spectrum showed a strong band at 2 102 cm⁻¹ in place of the v(CO) of the aroyl group of the starting material. These spectral characteristics are similar to those of the cationic complexes trans- $[Pt(CO)RL_2][ClO_4]$,⁹ and it seems that halide abstraction by the methyl fluorosulphate ¹⁴ promotes aryl migration from carbon to platinum, to give trans-[Pt(CO)RL₂][SFO₃].

EXPERIMENTAL

All the solvents were dry and oxygen-free, and reactions were carried out under nitrogen. The ³¹P-{¹H} n.m.r. spectra were recorded at 40.48 MHz on a JEOL PFT 100

^{*} Throughout this paper: 1 mmHg \approx 13.6 \times 9.8 Pa.

¹⁰ J. Chatt and L. M. Venanzi, J. Chem. Soc., 1955, 3858.

¹¹ U. Belluco, 'Organometallic and Coordination Chemistry of Platinum,' Academic Press, New York, 1974, p. 78.

¹² M. M. Muir and E. M. Cancio, Inorg. Chim. Acta, 1970, 4,

^{565.} ¹³ D. A. Duddell, P. L. Goggin, R. J. Goodfellow, M. G. Norton, and J. G. Smith, J. Chem. Soc. (A), 1970, 545. ¹⁴ C. Eaborn, N. Farrell, J. L. Murphy, and A. Pidcock, J.C.S.

Dalton, 1976, 58.

instrument. Solutions in dichloromethane in 8-mm outside-diameter tubes were used. The field was locked to the ²H resonance of a solution of trimethyl phosphite in CD₂Cl₂, which served as external reference. Isomer proportions were inferred directly from the relative peak heights in the ${}^{31}\mathrm{P}{-}\{{}^{1}\mathrm{H}\}$ n.m.r. spectra. The starting platinum complexes were made by published methods; 15, 16 some physical data are given in Table 4. The preparations of the tin compounds have been described.¹⁷

Reactions of $cis-[Pt(C_2H_4)Cl_2L]$ (L = PEt₃, PMe₂Ph, or PEt₂Ph) with Aryltrimethyltin Compounds —(a) Trimethylp-tolyltin (0.37 g, 1.4 mmol) in dichloromethane (10 cm³) was added dropwise with stirring during 0.5 h to a solution of cis-[Pt(C₂H₄)Cl₂(PEt₂Ph)] (0.65 g, 1.4 mmol) in dichloromethane (20 cm³). A yellow colour appeared after 5 min, and the odour of SnMe₃Cl was detectable. The mixture was stirred at room temperature for another 2 h, and the solvent removed in vacuo to leave a pale yellow solid, which was washed with diethyl ether and dried. The i.r. spectrum (Nujol) of the crude product had a strong band at 274 cm⁻¹,

 $[^{1}J(Pt-P) 2 800 Hz]$, identified by comparison with an authentic sample as trans-[Pt(C_6H_4Me-p)Cl(PEt_3)₂].

Reaction of \hat{cis} -[Pt(C₂H₄)Cl₂(PEt₃)] with Diphenylmercury. -Addition of diphenylmercury (0.77 g, 2.2 mmol) to a suspension of cis-[Pt(C₂H₄)Cl₂(PEt₃)] (0.47 g, 2.15 mmol) in dichloromethane (15 cm³) immediately produced a yellow solution. The solution was stirred at room temperature for 5 h, during which time a precipitate of chloro(phenyl)mercury(11) appeared. Filtration, evaporation of the solvent, and removal of the remaining HgPhCl by sublimation at 90 °C (0.01 mmHg) gave a residue, which was dissolved in chloroform. The solution was stirred with charcoal for 0.5 h and filtered. Addition of pentane gave white di- μ chloro-bis[phenylbis(triethylphosphine)platinum(II)] (0.215 g, 44%), m.p. 160 °C (decomp.), v(Pt-Cl) at 286 cm⁻¹ (Found: C, 33.8; H, 4.7. Calc. for $C_{24}H_{40}Cl_2P_2Pt_2$: C, 33.85; H, 4.7%). The ${}^{31}P-{}^{1}H$ n.m.r. spectrum indicated the presence of both the cis (85%), δ 130.8 p.p.m. [¹J(Pt-P) 4 780 Hz], and the trans isomer (15%), § 131.4 p.p.m. [1](Pt-P) 4 734 Hz].

TABLE 4

Physical and spectroscopic properties of cis-[Pt(C₂H₄)Cl₂L] and cis-[Pt(CO)Cl₂L] complexes

	M.p.	I.r. data (cm ⁻¹) «	31P		
Complex	$(\theta_c/^{\circ}C)$	$\overline{\nu(\text{Pt-Cl})}$	v(CO)	δ/p.p.m.	$^{1}J(\text{Pt}-\text{P})/\text{Hz}$	Notes
$[Pt(C_2H_4)Cl_2(PEt_3)]$	130 - 134	280, 322		127.4	3042	с
$[Pt(C_2H_4)Cl_2(PPr_3)]$	139 - 143	295, 335		136.2	3025	d
$[Pt(C_2H_4)Cl_2(PMe_2Ph)]$	230 - 234	303, 341		150.6	3 081	e
$[Pt(C_2H_4)Cl_2(PEt_2Ph)]$	164 - 170	295, 331		131.1	3079	f
$[Pt(CO)Cl_2(PEt_3)]$	136	310, 357	$2\ 100$	117.6	2.781	g
$[Pt(CO)Cl_2(PMe_2Ph)]$	188 - 191		$2\ 108$	150.4	2839	h

" Nujol mults, except for $[Pt(CO)Cl_2(PMe_2Ph)]$ in $CHCl_3$. ^b In CH_2Cl_2 , relative to $P(OMe)_3$ in C_6D_6 . ^c In ¹H n.m.r. in $CHCl_3$: $\tau 5.86$ (PtCH₂), ² $f(PtCH_2)$ 61.8 Hz. ^d In ¹H n.m.r. in $CHCl_3$: $\tau 5.68$ (PtCH₂), ² $f(PtCH_2)$ 67.0 Hz (lit., ¹⁶ m.p. 138—141 °C). ^e Not sufficiently soluble in $CHCl_3$ for ¹H n.m.r. $\tau 7.76$ (trans-P-CH₃); $|^2f(PtCH_2) + {}^4f(PPtPCH)| 12.3$ and ${}^3f(PtPCH) 36.0$ Hz (lit., ¹⁶ m.p. 184—191 °C).

and the bands at 295 and 331 cm⁻¹ given by the starting material were absent. The solid was dissolved in hot chloroform, diethyl ether was added until a turbidity persisted, and the mixture was set aside at 5 °C to give colourless crystals of $di-\mu$ -chloro-bis[(diethylphenylphosphine)p-tolylplatinum(11)] (0.56 g, 81%) (see Table 1).

(b) A similar procedure starting from $Sn(C_6H_4Bu^t-p)Me_3$ and $cis - [Pt(C_2H_4)Cl_2(PMe_2Ph)]$ gave fine needles of $di - \mu$ chloro-bis[(dimethylphenylphosphine)(p-t-butylphenyl)platinum(II)] in 87% yield (see Table I).

(c) Trimethyl(p-tolyl)tin (1.3 g, 4.9 mmol) was added directly in one portion to a suspension of $cis_{\Gamma}Pt(C_{2}H_{4})Cl_{2}$ - (PEt_3)] (2.0 g, 4.9 mmol) in dichloromethane (10 cm³). yellow colour appeared and gas was slowly evolved. After 0.5 h the solution, which had become red, was evaporated to half its volume, benzene (5 cm³) was added, and the white solid which separated was filtered off and identified as unchanged cis-[Pt(C₂H₄)Cl₂(PEt₃)] (0.73 g, 37%) from its i.r. spectrum. The red solution was stirred with charcoal for 0.5 h and filtered through Celite. The pale yellow filtrate was evaporated in vacuo and the resulting oil crystallized from dichloromethane-pentane to give white plates of di-µ*chloro-bis*[p-*tolyl(triethylphosphine)platinum*(II)] (0.88)g, 41%; 65% based on unrecovered starting material) (see The ³¹P-{¹H} spectrum of the mother liquor Table 1). showed the presence of another product, & 125.9 p.p.m.

Aryltrimethyltin Compounds.-(a) (p-Methoxyphenyl)trimethyltin (0.26 g, 0.97 mmol) in dichloromethane (10 cm³) was added dropwise with stirring to a solution of *cis*-[Pt(CO)- $Cl_2(PEt_2)$] (0.40 g, 0.97 mmol) in dichloromethane (15 cm³). The resulting yellow solution was stirred at room temperature for 2 h, and the solvent was removed to leave an orange wax which was crystallized from chloroform-pentane to give pale yellow di-u-chloro-bis[(p-methoxybenzoyl)(triethylphosphine)platinum(II)] (0.41 g, 87%) (see Table 1).

Reactions of cis- $[Pt(CO)Cl_2L]$ (L = PEt_3 or PMe_2Ph) with

(b) A similar procedure using trimethyl(p-t-butylphenyl)tin and cis-[Pt(CO)Cl₂(PMe₂Ph) gave pale yellow di-µchlorobis[(dimethylphenylphosphine)(p-t-butylbenzoyl)platinum(11)] (67%) (see Table 1).

(c) In several cases the cis[Pt(CO)Cl₂L] complexes were not isolated; carbon monoxide was passed through the solution of [Pt₂Cl₄L₂] until reaction was complete, and the SnRMe_a compound was then added as above.

Reaction of $[Pt_2(C_6H_4Me-p)_2Cl_2(PEt_2Ph)_2]$ with cod.—A solution of $[Pt_2(C_6H_4Me-p)_2Cl_2(PEt_2Ph)_2]$ (0.20 g, 0.205 mmol) and an excess of cod (0.4 cm³) in chloroform (10 cm³) was heated under reflux for 9 h then set aside overnight. Solvent was removed in vacuo and pentane (5 cm³) was added to give a white solid, which was filtered off, washed with

¹⁶ A. C. Smithies, M. Rychek, and M. Orchin, J. Organometallic Chem., 1968, 12, 199. ¹⁷ C. Eaborn, H. L. Hornfeld, and D. R. M. Walton, J. Organo-

¹⁵ J. Chatt, N. P. Johnson, and B. L. Shaw, J. Chem. Soc., 1964, 1662.

metallic Chem., 1967, 10, 529.

pentane, and identified as *chloro(cyclo-octadiene)*(p-tolyl)platinum(II) 0.082 g, 0.19 mmol), m.p. 173—176 °C (decomp.), v(Pt-Cl) at 322 cm⁻¹. Hydrogen-1 n.m.r. spectrum in CDCl₃: τ 4.36 [t, olefin protons trans to R, ²J(Pt-CH) 31 Hz], 5.51 [t, olefin protons trans to Cl, ²J(Pt-CH) 73 Hz], 7.63 (m, CH₂), 7.81 (s, CH₃), and 2.60—3.33 (m, C₆H₄) (Found: C, 41.7; H, 4.6. C₁₅H₁₉ClPt requires C, 41.9; H, 4.6%). The pentane mother liquors were evaporated to give a colourless oil, which was crystallized from watermethanol to give needles of trans-chlorobis(diethylphenylphosphine)(p-tolyl)platinum(II) (0.091 g, 0.14 mmol), m.p. 83 °C, v(Pt-Cl) at 275 cm⁻¹. N.m.r. spectra: ¹H in CDCl₃, τ 7.86 (s, CH₃); ³¹P{¹H} in CH₂Cl₂, δ 126.5 p.p.m., [¹J(Pt-P) 2 881 Hz] (Found: C, 49.6; H, 5.9. C₂₇H₃₇ClP₂Pt requires C, 49.6; H, 5.7%).

Reaction of $[Pt_2(2-C_8H_5O)_2Cl_2(PMe_2Ph)_2]$ with Triphenylarsine.—Triphenylarsine (0.055 g, 0.18 mmol) was added to a suspension of $[Pt_2(2-C_8H_5O)_2Cl_2(PMe_2Ph)_2]$ (0.085 g, 0.087 mmol) in benzene (15 cm³). The complex dissolved within 1 min to give a colourless solution which was left at room temperature for 0.5 h. The solvent volume was reduced in vacuo and pentane was added to give colourless crystals of trans-(2-benzo[b]furyl)chloro(dimethylphenylphosphine)(triphenylarsine)platinum(II) (0.09 g, 65%), m.p. 205—215 °C (decomp.), v(Pt-Cl) at 303 cm⁻¹ (Found: C, 52.1; H, 4.0. C₃₄H₃₁AsClOPPt requires C, 51.6; H, 3.95%). Reaction of $[Pt_2(C_8H_4Me-p)_2Cl_2(PEt_3)_2]$ with Pyridine.—A procedure analogous to that of the preceding experiment gave *chloro(pyridine)*(p-tolyl)(triethylphosphine)platinum(II) (76%), m.p. 133 °C (decomp.), ν (Pt-Cl) at 278 (Cl trans to C₅H₅N) and 265 cm⁻¹ (Cl trans to PEt₃)(Found: C, 42.0; H, 5.2. C₁₈H₂₇NPPt requires C, 41.7; H, 5.2%).

Reaction of $[Pt_2(COC_6H_4OMe-p)_2Cl_2(PEt_3)_2]$ with Sodium Iodide.—When an excess of sodium iodide (0.1 g) was added to the yellow solution of $[Pt_2(COC_6H_4OMe-p)_2Cl_2(PEt_3)_2]$ (0.15 g, 0.165 mmol) in acetone (25 cm³) the colour immediately darkened and a fine white precipitate appeared. This was filtered off, and the filtrate was evaporated to leave an orange solid, which was washed with water, dried, and dissolved in chloroform. The solution was filtered through Celite and pentane was added to give orange crystals of $di-\mu$ -iodo-bis[(p-methoxybenzoyl)(triethylphosphine)platinum(II)] (0.165 g, 92%), m.p. 155-156 °C (decomp.), v(CO) at 1 612 cm⁻¹. N.m.r. spectra: ¹H in CDCl₃, τ 6.17 (s, OMe); ³¹P-{¹H} in CH₂Cl₂, (i) trans isomer (ca. 51%), δ 133.8 p.p.m., $[^{1}J(Pt-P) 4 912 Hz];$ (ii) cis isomer (ca. 49%), 133.8 p.p.m. [¹J(Pt-P) 4 858 Hz] (Found: C, 29.1; H, 3.9. C₁₃H₂₂IOPPt requires C, 29.2; H, 3.85%).

We thank the S.R.C. for the award of a Research Studentship (to K. J. O.), and Chugoku Marine Paints Ltd. for a gift of dichlorodimethyltin.

[7/2077 Received, 25th November, 1977]